S

Workshop
Angular Rouling

workshops.de

Routing

No Single Page Application without routing

workshops.de

Why routing

> A website consists of multiple pages for displaying various content.

> Angular applications are single-page applications (SPAs), meaning
they typically have only one HTML page.

> Routing is the mechanism used to navigate within an Angular app

without physically leaving or reloading the page.

Basic routing

Basic Routing

> Based on browser location and history
> Map of url to content

> Special package: @angular/router

Basic Routing

> Define routes per feature

> An extra file for route configuration:

feature-name.routes.ts

Basic Routing

Define routes

import { Routes } from '@angular/router’

export const routes: Routes = [{ 11

Basic Routing

Register routes

import { provideRouter } from '@angular/router’;
import { routes } from './app.routes';

export const appConfig: ApplicationConfig = {
providers: [provideHttpClient(), provideRouter(routes)]

Iy

Basic Routing

Defining a route - without leading ‘/’!

path: 'books',
component: BookComponent

¥

Default routes

Routing wildcard

Set a wildcard to handle all not defined routes

{
path: "**"]
component: PageNotFoundComponent

¥

Routing Redirection

Redirect to default router

path: "',
redirectTo: '/books',
pathMatch: 'full'’

}

Displaying routes

Basic Routing

> No connection between DOM and route, yet
> Router needs to know where he should append the component

> Special component: RouterOutlet

Basic Routing

Routing components are available through the routing import

@Component ({

imports: [RouterOutlet],

1)

export class AppComponent {}

<router-outlet></router-outlet>

Basic Routing

1. Urlin browser matches against route path
2. Information of connected route are evaluated

3. Information are used to show correct component in routerOutlet

Basic Routing

(@ localhost:3000/books

Routes = [{ path: 'books', component: BookComponent }, ...];

<router-outlet></router-outlet>
<app-book>...</app-book>

routerLink

RouterLink example

+

{ path: 'books', component: BookComponent }

RouterLink import

@Component ({

imports: [RouterLink],

1)
export class AppComponent {}

lask

Add basic routing

oooooooooooo

Routing with
parameters

Routing with parameters

> You need dynamic routes very often, e.g. Detail Views
> Content of a component is configurable

> You need additional data in your component

Routing with parameters

Add parameter placeholders with a leadling :

{ path: 'books/detail/:isbn', component: BookDetailComponent }

routerLink with
params

RouterLink with params example

<a [routerLink]=" ['/books','/detail', 1] ">
+

{ path: 'books/detail/:isbn’', component: BookDetailComponent }

Retrieve route
params in a
component class

Route params

Inject ActivatedRoute service and subscribe params observable.

constructor(
private readonly route: ActivatedRoute

) {}

this.route
.params
.subscribe((params) => ...);

Why an Observable?

Route params

> Angular has some caching mechanisms

> Current component and components on the same level in the tree are

cached for faster navigation
> Components are not instantiated again

> But parameters could have changed, e.g. paging

Simple approach
with snapshots

Route params - Snapshots

> Snapshots are images of the current state
> ActivatedRoute gives access to the current router state

> (Can be used if not future changes expected

Route params - Snapshots

The params of a route are stored in a snapshot object.

private readonly route: ActivatedRoute

const bookIsbn = this.route.snapshot.paramMap.get('isbn");

Navigate with Router
Injectable

Router Service

Trigger navigation from Component Class

constructor(
private readonly router: Router,
private readonly bookApi: BookApiService) {}

goToBookDetails(book: Book) {
this.router.navigate(['books', 'detail', book.isbn]);

}

lask

Add BookDetail Route

workshops.de

Nested & child routes

workshops.de

Nested routes

> An app / feature can have sub features with own components
> Each (sub) feature can manage its own routes

> No need to change root routing

Think in Features & Components

Book Feature —

0~

_ App

Book a Navigation |

BookList a O BookDetail

Nested routes

Routes of a book feature with a root book component

export const bookRoutes: Routes = [
{
path: 'books',
component: BookComponent
}
15

Nested routes

HTML with nested route - book.component.html has its own routerOutlet

<app-root>
<router-outlet></router-outlet>
<book>
<router-outlet></router-outlet>
</book>
</app-root>

Child routes

> A route can have children
> Each child gets its parent path as base path

> Child route will be displayed in the RouterOutlet of its parent

Child routes

BookList and BookDetail as route children under its parent Book

path: 'books',
component: BookComponent,

children: [
{
path: '', component: BookListComponent
}s
{
path: 'detail/:isbn', component: BookDetailComponent
}

]

Child routes - absolute links

@ http://localhost:4200/anywhere/

Parent Chlild

<a [routerLink]=" ['/books', ‘detail’, 1] ">

@ http://localhost:4200/books/detail/1

Child routes - relative links

@ http://localhost:4200/books

<a [routerLink]=" [‘detail’, 1] ">

@ http://localhost:4200/books/detail/1

Lazy Loading

Load Routes and Features only if they are needed

workshops.de

Lazy Loading

> You do not want to load everything at once
> Split up your app in smaller parts — load them when needed
> Smaller initial bundle size — faster initial loading

> Routes with complex code or many dependencies but mostly not

opened — add lazy loading

Lazy Loading

Request Books feature if needed - app.routes.ts

export const routes: Routes = |

path: 'books',
loadChildren: () => import('./book/book.routes"')
.then(mod => mod.bookRoutes)

|

Book components imports In
other app.*.ts are NOT needed
anymore!

Lazy Loading Compiler

Initial Chunk Files | Names Raw Size
polyfills 82.71

Initial Total | 99.62 kB

Lazy Chunk Files | Names Raw Size

K-routes

Lazy Loading Browser

=l localhost
<) client

<) styles.css

() polyfills.js
2l mainjs

) env.mjs

*l @angular_platform-browser.js?v=a5470a40
@angular_common_http.js?7v=a5470a40

J chunk-NWC5VNPT js

<) @angular_router.js?v=a5470a40

[2) @angular_core.js?v=a5470a40

} chunk-GQJGIDNZjs?v=c5777549

) chunk-CC6FZOYQ.js?v=c5777549

Y} chunk-MTWEUAWN.,js?v=c5777549

2} chunk-SO4ATP2U js?v=c5777549

localhost

2} detect_angular_for_extension_icon_bundle,js
(&) chunk-SESNDNBN.js

JJ @angular_common.js?v=a5470a40
<] @angular_core_nxjs-interop.js?v=a5470a40

} books

General

Request URL:
Request Method:
Status Code:
Remote Address:

Referrer Policy:

Response Headers

Access-Control-Allow-Origin:

Connection:
Date:
Keep-Alive:

Request Headers

Accept:
Accept-Encoding:
Accept-Language:
Connection:

Dnt:

Host:
If-None-Match:
Origin:

http://localhost:4200/books

http://localhost:50717/chunk-SESNDNBN.js
GET

strict-origin-when-cross-origin

keep-alive
Mon, 08 Jan 2024 12:07:55 GMT

timeout=5

T
gzip, deflate, br

de en-DE;q=0.9,en;q=0.8,de-DE;q=0.7,nl:q=0.6
keep-alive

1

localhost:50717
W/*4144-xr103hSBYGqR6creNXYXmxMdwG8®
http://localhost:50717

chunk-+*. js is loaded

lask

Use Lazy Loading for Book feature

workshops.de

Route Guards

workshops.de

Why guards?

Why guards?

> You want to protect your routes against unwanted access

> Sometimes you may have restricted permissions

> User have to be signed in to see the content

> Protect the user

> Notify him about unsaved changes, before leaving the route

Route Guards

> Angular defines Function Types

> Guard functions have to return a boolean, a boolean promise or a

boolean observable — something to evaluate to true or false at the

end

> Possibility to have asynchronous guard functions, e.g. authorization
check with an AP

Route Guards

> 5 kinds of route guards
> Implement multiple guards in one service

> Guards are route based and not component based

Route Guards

canDeactivate

canActivate

canActivateChild

resolve

Route Guards

canDeactivate
canActivate

canActivateChild

canMatch

resolve

s it permissible for users to exit
a route?

Verify if the data has been
successfully saved.

Receive notifications when
leaving the route.

Route Guards

canDeactivate e Verify whether the route can be
activated.

canActivate

e Confirmthe user's
canActivateChild authentication status.

e e Validate the user's access rights.

resolve

Route Guards

canDeactivate

canActivate

canActivateChild

canMatch

resolve

A route may have subordinate
routes.

Verify whether subordinate
routes can be activated.

If all child routes share the
same "canActivate" function,
you can implement a single
check for all of them.

Route Guards

canDeactivate

canActivate

canActivateChild

canMatch

resolve

s it permitted to exit a route?
Verify if the data has been
persisted correctly.
Notifications regarding leaving
the route.

Route Guards

canDeactivate e Fetch data prior to component
loading.

canActivate
e Able to handle any return value,

canActivateChild such as Observables.

canMatch

resolve

Guards as functions

Guards as functions

> Return types are exported by @angular/router

> Type names:

> canActivate guard — CanActivateFn type

> canDeactivate guard — CanDeactivateFn type

>

Guards as functions

> Some types have a generic option

> You might want access to the component, their information and current state

> function confirmlLeaveGuard:CanDeactivateFn<BookDetailComponent>

> (Others not:

> function hasAccessGuard: CanActivateFn

Guards as functions

Simple guard function

import { CanActivateFn } from '@angular/router’;

export const hasAccessGuard: CanActivateFn =
(route: ActivatedRouteSnapshot, state: RouterStateSnapshot) => {
return true;

};

Guards as functions

Connect a guard with a route

{
path: 'books',

component: BookComponent,
canActivate: [hasAccessGuard]

¥

Guards as classes (deprecated)

> An Angular Service

> A class that implements the guard interfaces

Guards as classes (deprecated)

Simple guard service

@Injectable({
providedIn: 'root’
})
export class CanActivateViaServiceGuard implements CanActivate {
canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot) {
return true;

}
¥

lask

Build a simple canDeactivate guard

workshops.de

Stateful guard functions

workshops.de

Stateful Route Guards

> Functions can use existing services to be stateful

> inject function can be used in this context

Stateful Route Guards

inject service

import { inject } from '@angular/core’;

import { ServiceA } from './service-a';

export const hasAccessGuard: CanActivateFn =
(route: ActivatedRouteSnapshot, state: RouterStateSnapshot) => {

const service = inject(ServiceA);

lask

Build a guard with state

workshops.de

Automatic Parameter Binding

workshops.de

Automatic Component Input Binding

> Router can bind inputs from parameters automatically
> Additional feature of the router itself

> Input parameter name must match path parameter name

Router feature ComponentinputBinding

Activate feature

provideRouter(routes, withComponentInputBinding())

Router feature ComponentinputBinding

Use feature

{
path: 'detail/:isbn',

component: BookDetailComponent,

}

export class BookDetailComponent {

@Input()
set isbn(isbn: string) {

}

lask

Use ComponentinputBinding

workshops.de

%, symetics

oooooooooooo

