
workshops.de

Workshop
 Angular Routing

workshops.de

Routing
No Single Page Application without routing

workshops.de

Why routing

￫ A website consists of multiple pages for displaying various content.

￫ Angular applications are single-page applications (SPAs), meaning

they typically have only one HTML page.

￫ Routing is the mechanism used to navigate within an Angular app

without physically leaving or reloading the page.

workshops.de

Basic routing

workshops.de

Basic Routing

￫ Based on browser location and history

￫ Map of url to content

￫ Special package: @angular/router

workshops.de

Basic Routing

￫ Define routes per feature

￫ An extra file for route configuration:

 feature-name.routes.ts

workshops.de

<code>Basic Routing
Define routes

// app.routes.ts
import { Routes } from '@angular/router'

export const routes: Routes = [{ /** **/ }];

workshops.de

<code>Basic Routing
Register routes

// app.config.ts
import { provideRouter } from '@angular/router';
import { routes } from './app.routes';

export const appConfig: ApplicationConfig = {
 providers: [provideHttpClient(), provideRouter(routes)]
};

workshops.de

<code>Basic Routing
Defining a route - without leading ‘/’!

export const appRoutes: Routes = [{
 path: 'books',
 component: BookComponent
}];

workshops.de

Default routes

workshops.de

<code>Routing wildcard
Set a wildcard to handle all not defined routes

{
 path: '**',
 component: PageNotFoundComponent
}

workshops.de

<code>Routing Redirection
Redirect to default router

export const appRoutes: Routes = [{
 path: '',
 redirectTo: '/books',
 pathMatch: 'full' // checks if full url matches path!
}, {
 ...
}];

workshops.de

Displaying routes

workshops.de

Basic Routing

￫ No connection between DOM and route, yet

￫ Router needs to know where he should append the component

￫ Special component: RouterOutlet

workshops.de

<code>Basic Routing
Routing components are available through the routing import

// app.component.ts
@Component({
 //...
 imports: [RouterOutlet],
 //...
})
export class AppComponent {}

// app.component.html
<router-outlet></router-outlet>

workshops.de

Basic Routing

1. Url in browser matches against route path

2. Information of connected route are evaluated

3. Information are used to show correct component in routerOutlet

workshops.de

Basic Routing

<router-outlet></router-outlet>

<app-book>...</app-book>

Routes = [{ path: 'books', component: BookComponent }, …];

workshops.de

routerLink

workshops.de

RouterLink example

{ path: 'books', component: BookComponent }

+

=

workshops.de

<code>RouterLink import

// app.component.ts
@Component({
 //...
 imports: [RouterLink],
 //...
})
export class AppComponent {}

workshops.de

Task
Add basic routing

workshops.de

Routing with
parameters

workshops.de

Routing with parameters

￫ You need dynamic routes very often, e.g. Detail Views

￫ Content of a component is configurable

￫ You need additional data in your component

workshops.de

<code>Routing with parameters
Add parameter placeholders with a leadling :

// app.routes.ts
const routes: Routes = [
 { path: 'books/detail/:isbn', component: BookDetailComponent }
];

workshops.de

routerLink with
params

workshops.de

RouterLink with params example

<a [routerLink]=" ['/books','/detail', 1] ">

{ path: 'books/detail/:isbn', component: BookDetailComponent }

+

=

workshops.de

Retrieve route
params in a
component class

workshops.de

<code>Route params
Inject ActivatedRoute service and subscribe params observable.

@Component(…)
export class BookDetailComponent implements OnInit {
 constructor(
 private readonly route: ActivatedRoute
) {}

 ngOnInit () {
 this.route
 .params
 .subscribe((params) => ...);
 }
}

workshops.de

Why an Observable?

workshops.de

Route params

￫ Angular has some caching mechanisms

￫ Current component and components on the same level in the tree are

cached for faster navigation

￫ Components are not instantiated again

￫ But parameters could have changed, e.g. paging

workshops.de

Simple approach
with snapshots

workshops.de

Route params - Snapshots

￫ Snapshots are images of the current state

￫ ActivatedRoute gives access to the current router state

￫ Can be used if not future changes expected

workshops.de

<code>Route params - Snapshots
The params of a route are stored in a snapshot object.

@Component(…)
export class BookDetailComponent implements OnInit {
 constructor(
 private readonly route: ActivatedRoute
) {}

 ngOnInit () {
 const bookIsbn = this.route.snapshot.paramMap.get('isbn');
 }
}

workshops.de

Navigate with Router
Injectable

workshops.de

<code>Router Service
Trigger navigation from Component Class

@Component({ /* ... */})
class BookComponent {
 constructor(
 private readonly router: Router,
 private readonly bookApi: BookApiService) {}

 goToBookDetails(book: Book) {
 this.router.navigate(['books', 'detail', book.isbn]);
 }

}

workshops.de

Task
Add BookDetail Route

workshops.de

Nested & child routes

workshops.de

Nested routes

￫ An app / feature can have sub features with own components

￫ Each (sub) feature can manage its own routes

￫ No need to change root routing

workshops.de

Think in Features & Components

C

CC

C C

Navigation

App

Book

BookList BookDetail

Book Feature

App

workshops.de

<code>Nested routes
Routes of a book feature with a root book component

export const bookRoutes: Routes = [
 {
 path: 'books',
 component: BookComponent
 }
];

workshops.de

<code>Nested routes
HTML with nested route - book.component.html has its own routerOutlet

<app-root>
 <router-outlet></router-outlet>
 <book>
 <router-outlet></router-outlet>
 ...
 </book>
</app-root>

workshops.de

Child routes

￫ A route can have children

￫ Each child gets its parent path as base path

￫ Child route will be displayed in the RouterOutlet of its parent

workshops.de

<code>Child routes
BookList and BookDetail as route children under its parent Book

// book.routes.ts
 {
 path: 'books',
 component: BookComponent,
 children: [
 {
 path: '', component: BookListComponent
 },
 {
 path: 'detail/:isbn', component: BookDetailComponent
 }
]

workshops.de

Child routes - absolute links

<a [routerLink]=" ['/books', 'detail', 1] ">

Parent Child

 http://localhost:4200/anywhere/i

 http://localhost:4200/books/detail/1i

workshops.de

Child routes - relative links

<a [routerLink]=" [‘detail’, 1] ">

 http://localhost:4200/booksi

 http://localhost:4200/books/detail/1i

workshops.de

Lazy Loading
Load Routes and Features only if they are needed

workshops.de

Lazy Loading

￫ You do not want to load everything at once

￫ Split up your app in smaller parts → load them when needed

￫ Smaller initial bundle size → faster initial loading

￫ Routes with complex code or many dependencies but mostly not

opened → add lazy loading

workshops.de

<code>Lazy Loading
Request Books feature if needed - app.routes.ts

export const routes: Routes = [

 // ...

 {

 path: 'books',

 loadChildren: () => import('./book/book.routes')

 .then(mod => mod.bookRoutes)

 }

];

workshops.de

Book components imports in
other app.*.ts are NOT needed
anymore!

workshops.de

Lazy Loading Compiler

workshops.de

Lazy Loading Browser

 http://localhost:4200/books chunk-*.js is loaded

workshops.de

Task
Use Lazy Loading for Book feature

workshops.de

Route Guards

workshops.de

Why guards?

workshops.de

Why guards?

￫ You want to protect your routes against unwanted access

￫ Sometimes you may have restricted permissions

￫ User have to be signed in to see the content

￫ Protect the user

￫ Notify him about unsaved changes, before leaving the route

workshops.de

Route Guards

￫ Angular defines Function Types

￫ Guard functions have to return a boolean, a boolean promise or a

boolean observable → something to evaluate to true or false at the

end

￫ Possibility to have asynchronous guard functions, e.g. authorization

check with an API

workshops.de

Route Guards

￫ 5 kinds of route guards

￫ Implement multiple guards in one service

￫ Guards are route based and not component based

workshops.de

Route Guards

canDeactivate

canActivate

canActivateChild

resolve

canMatch

workshops.de

Route Guards

● Is it permissible for users to exit
a route?

● Verify if the data has been
successfully saved.

● Receive notifications when
leaving the route.

canDeactivate

canActivate

canActivateChild

resolve

canMatch

workshops.de

Route Guards

● Verify whether the route can be
activated.

● Confirm the user's
authentication status.

● Validate the user's access rights.

canDeactivate

canActivate

canActivateChild

resolve

canMatch

workshops.de

Route Guards

● A route may have subordinate
routes.

● Verify whether subordinate
routes can be activated.

● If all child routes share the
same "canActivate" function,
you can implement a single
check for all of them.

canDeactivate

canActivate

canActivateChild

resolve

canMatch

workshops.de

Route Guards

● Is it permitted to exit a route?
● Verify if the data has been

persisted correctly.
● Notifications regarding leaving

the route.

canDeactivate

canActivate

canActivateChild

resolve

canMatch

workshops.de

Route Guards

canDeactivate

canActivate

canActivateChild

resolve

canMatch

● Fetch data prior to component
loading.

● Able to handle any return value,
such as Observables.

workshops.de

Guards as functions

workshops.de

Guards as functions

￫ Return types are exported by @angular/router

￫ Type names:

￫ canActivate guard → CanActivateFn type

￫ canDeactivate guard → CanDeactivateFn type

￫ …

workshops.de

Guards as functions

￫ Some types have a generic option

￫ You might want access to the component, their information and current state

￫ function confirmLeaveGuard:CanDeactivateFn<BookDetailComponent>

￫ Others not:

￫ function hasAccessGuard: CanActivateFn

workshops.de

<code>Guards as functions
Simple guard function

import { CanActivateFn } from '@angular/router';

export const hasAccessGuard: CanActivateFn =
 (route: ActivatedRouteSnapshot, state: RouterStateSnapshot) => {
 return true;
 };

workshops.de

<code>Guards as functions
Connect a guard with a route

{
 path: 'books',
 component: BookComponent,
 canActivate: [hasAccessGuard]
}

workshops.de

Guards as classes (deprecated)

￫ An Angular Service

￫ A class that implements the guard interfaces

workshops.de

<code>Guards as classes (deprecated)
Simple guard service

@Injectable({
 providedIn: 'root'
})
export class CanActivateViaServiceGuard implements CanActivate {
 canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot) {
 return true;
 }
}

workshops.de

Task
Build a simple canDeactivate guard

workshops.de

Stateful guard functions

workshops.de

Stateful Route Guards

￫ Functions can use existing services to be stateful

￫ inject function can be used in this context

workshops.de

<code>Stateful Route Guards
inject service

import { inject } from '@angular/core';

import { ServiceA } from './service-a';

export const hasAccessGuard: CanActivateFn =

 (route: ActivatedRouteSnapshot, state: RouterStateSnapshot) => {

 const service = inject(ServiceA);

 // ...

workshops.de

Task
Build a guard with state

workshops.de

Automatic Parameter Binding

workshops.de

Automatic Component Input Binding

￫ Router can bind inputs from parameters automatically

￫ Additional feature of the router itself

￫ Input parameter name must match path parameter name

workshops.de

<code>Router feature ComponentInputBinding
Activate feature

// app.config.ts

provideRouter(routes, withComponentInputBinding())

workshops.de

<code>Router feature ComponentInputBinding
Use feature

{
 path: 'detail/:isbn',
 component: BookDetailComponent,
}

export class BookDetailComponent {

 @Input()

 set isbn(isbn: string) {

 }

workshops.de

Task
Use ComponentInputBinding

workshops.de

symetics

